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The possibility of describing complex processes by means of the KEKAM equation is 
demonstrated. The extensive descriptive ability of this equation can be explained within the 
nontraditional methodology of inverse kinetic problem solving. 

In paper [1] the nontraditional methodology of solving the inverse kinetic 
problem is considered. In contrast to the traditional procedure based on the 
principle of an unambiguous description, which of necessity requires the choice of 
single kinetic function for the entire kinetic curve or for its segments, the 
nontraditional methodology relies upon the complementary principle and uses a 
totality of, rather than separate kinetic functions for the same segment of the kinetic 
curve. Two particular approaches to the inverse problem solution within the 
nontraditional methodology have been considered in [2, 3]. The present series 
discusses other possible approaches. 

The first part of the series explains the extensive descriptive ability [4] of the 
generalized topokinetic equation of Kolmogorov-Erofeev-Kazeev-Avrami- 
-Mampel (KEKAM) and substantiates its application within the nontraditional 
methodology. The expression extensive ability here means the ability of the 
KEKAM equation to describe not only nucleation and nuclear growth, but also 
processes of a different nature. In the latter case, a physically based interpretation of 
experimental data in terms of the KEKAM models seems impossible. 

It is convincingly demonstrated in [5] that the KEKAM equation can fairly well 
reflect elementary reaction mechanism models different from the physical model 
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involved in this equation and corresponding to other kinetic functions. The 
KEKAM equation, however, can cover not only elementary, but also rather 
complex models of a process, which for example conform with the linear 
combination of  kinetic functions. This will be shown in what follows. Theoretically, 
this linear combination describes the process, which consists of  a number of parallel 
reactions with close activation energies. 

As the linear combination, we have used functions of  three classes not reducible 
to one another [3], corresponding to power law nuclear growth (f l(a)) ,  a phase 
boundary reaction (f2(0[)) and diffusion (f3(0[)). The approximation problem 
reduces mathematically to finding the coefficients of  Eq. (1) for each prescribed 
value of the exponent in the KEKAM equation: 

[ -  in (1 - 0[ ) ] l /m ~__ C 1  f l ( 0 0  --~ C2f2(0[) + C3f3(00 (1) 

It is evident that, when 0[ is prescribed, the coefficients C1, C2 and C3 in Eq. (1) may 
be found by using the least squares method, i.e. from the condition of  minimum (2): 

k 

( [ -  In (1 - o~i)] l / m -  Clfl(0[i) - Czf2(0[ i )  - C3f3(0[ i ) )  2 (2) 
i = 1  

where k is the number of transformation degree values;/is their ordinal number. As 
(2) is linear relative to the coefficients, the latter can be found by using ordinary 
multiple linear regression [6]. The approximation quality is characterized by the 
mean relative deviation, calculated as 

100 L [ -  In (1 --0[i)] lira -- Cl f l (o~i )  - C2f2(0[i) - C3f3(0[i) [ 
f = ~ ,=1 [ -  In (1 - 0[i)]1/m J (3) 

The coefficients of  Eq. (1), calculated for five different values of  m (Eqs (4) 
through (8)), are given below as an example. The base functions of  the linear 
combination (fl(0[),f2(0[) and f3(0[)) are chosen arbitrarily within the above classes. 
Ten equidistant values of 0[ from the range 0.01 to 0.9 were used for calculation, the 
greatest deviations (to 10ft) being observed at ~ < 0.1. 

[ -  In (1 - 00] 1/4 ~ C I  ~1 /4  -~- C 2 [ 1  - (1 - 0[) 1/2] + C 3 [ 1  - (1 - 0[)1/312 

C 1 = 0.99 C 2 = 0.194 C3 = 0.45 f = 0.07% 

[ -  In (1 - 0[)]1/3 ~ C1011/3 + C2[1 _ (1 - 0[)1/3] + C3[1 _ (1 - 0[)1 oo3]2 

C1 = 1.0 C2 = 0.3 C 3 = 0.675 f = O . l %  

[ -  In (1 - 0[)]1/2 ~,~ ClO~1/2 _~_ C 2 [ 1  _ (1 - ~ ) 1 / 2 ]  ~_ C 3 [ 1  _ (1 - -  0[)1/312 

C1 = 0.97 C2 = 0.3 C3 = 1.365 6 = 0.2% 

(4) 

(5) 

(6) 
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C1 = 0.5 

[ -  In (1 - ~)]2/3  ~ C1~2/3  d- C2[1  - (1 - ~)1/2] '1- C3[1  - (1 - 001/3] 2 

C z = 2.4 C 3 = 3.75 6 = 0.4% 

[ -  In (1 - ~)] ,~ CI~ + Cz[1 - (1 - ~)1/2] + C3[1 - (1 - ~)1/312 

(7) 

(8) 
C 1 = 2.41 C2= - 2 . 8  C3 = 7.05 6 = 0.5% 

The values of  6 for Eqs (4) through (8) indicate that the above approximations are 
satisfactory, and suggest two calculations. First, the K E K A M  equation can 
describe both elementary reaction mechanism models obeying one kinetic function 
and complex processes obeying a linear combination of functions. Thus, it provides 
a generalized description of  different solid-phase processes. Second, the class of 
KEKAM functions within some error is redundant, since any function of this class 
can be replaced by a linear combination of  three other classes [3]. The K E K A M  
functiones redundancy follows from [7] too, where the undistinguishedness of  its 

particular forms in a single non-isothermal experiment is mentioned. Therefore a 
complex solid-phase process can formally be described either through a set of  
linearly independent kinetic functions not belonging to the class of  K EK A M 
functions but reflecting one of  the important process features, or in terms of  one 
K E K A M  function providing a generalized description. It should be noted that in 
the former case the problem of  discriminating the competing kinetic functions 
inevitably arises, and cannot be solved unambiguously by formal means [1], while in 
the latter case it is required to find the K E K A M  function parameter that will best 
describe the process (but its value may be not physically interpreted) and the 
corresponding confidence boundaries. Then the effective values of  the activation 
energy and preexponential factor can be found. Evel-ything stated above relates not 
only to the K E K A M  functions, but also to other functions proposed as generalized 
ones, e.g. in [8, 9]. The reliability and practical value of  the effective kinetic 
parameters obtained by means of  generalized description functions depend upon 
the certainty with which this function approximates to the kinetic curve. 

Conclusion 

(i) The extensive descriptive ability of  the K E K A M  equation can be explained 
within the nontraditional methodology [1] of solving the inverse kinetic problem. 

(ii) Since the main difference of  the nontraditional methodology from the 
traditional one implies the use of  a generalized rather than a single kinetic function 
for the description of a process, then, because of(i), the application of  even a single 
K E K A M  function (or one similar to this) to describe complex processes, i.e. those 
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which do not consist with the K E K A M  models, may be considered to some 
approximation as a description within the framework of the nontraditlonal 
methodology. 
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Z u s a m m e n f a s s u n g  - -  Die Moghchkelt elner komplexen ProzeBbeschrelbung mittels der KEKAM- 
Glelchung wird demonstnert D~e umfassende Eignung dleser Glelchung kann m~t der mchttradmonel- 
len Methodologle der Losung inverser kmetischer Probleme erklart werden. 

Pe3tlOMe - -  I'lpolleMOHCTpHpoBaHa BO3MO)]KHOeTb onncaBI~a CYtOX~HblX npoIleccoa c llOMOll~blO 
ypanneHna KEKAM. llInporaa onHcaTe~abnaa CHOCO6HOCTb 3TOFO ypanHeHH~l Mo)KeT 6blTb o6~,acHena 
a paMrax neTpa)lnunoHnOfi MeTO~IOYlOrI, In pemeHHa o6paTHO~ KHHeTHqecKofi 3a)laqn. 
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